昇思学习营-模型推理和性能优化笔记

推理

环境准备

安装Mindspore

pip uninstall mindspore -y
%env MINDSPORE_VERSION=2.6.0
pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/${MINDSPORE_VERSION}/MindSpore/unified/aarch64/mindspore-${MINDSPORE_VERSION}-cp39-cp39-linux_aarch64.whl --trusted-host ms-release.obs.cn-north-4.myhuaweicloud.com -i https://pypi.tuna.tsinghua.edu.cn/simple

安装MindNLP

pip uninstall mindnlp -y
pip install https://xihe.mindspore.cn/coderepo/web/v1/file/MindSpore/mindnlp/main/media/mindnlp-0.4.1-py3-none-any.whl

开始推理

from mindnlp.transformers import AutoModelForCausalLM, AutoTokenizer
from mindnlp.transformers import TextIteratorStreamer
from mindnlp.peft import PeftModel
from threading import Thread

# 开启同步,在出现报错,定位问题时开启
# mindspore.set_context(pynative_synchronize=True)

# Loading the tokenizer and model from Modelers's model hub.
tokenizer = AutoTokenizer.from_pretrained("MindSpore-Lab/DeepSeek-R1-Distill-Qwen-1.5B-FP16", mirror="modelers")
# 设置pad_token为eos_token
if tokenizer.pad_token is None:
    tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained("MindSpore-Lab/DeepSeek-R1-Distill-Qwen-1.5B-FP16", mirror="modelers")
# adapter_model path
# model = PeftModel.from_pretrained(model, "./output/DeepSeek-R1-Distill-Qwen-1.5B/adapter_model_for_demo/")

system_prompt = "你是一个智能聊天机器人,以最简单的方式回答用户问题"

def build_input_from_chat_history(chat_history, msg: str):
    messages = [{'role': 'system', 'content': system_prompt}]
    for info in chat_history:
        role, content = info['role'], info['content']
        messages.append({'role': role, 'content': content})
    messages.append({'role': 'user', 'content': msg})
    return messages


def inference(message, history):
    messages = build_input_from_chat_history(history, message)
    input_ids = tokenizer.apply_chat_template(
            messages,
            add_generation_prompt=True,
            return_tensors="ms",
            tokenize=True
        )

    streamer = TextIteratorStreamer(tokenizer, timeout=300, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        input_ids=input_ids,
        streamer=streamer,
        max_new_tokens=1024,
        use_cache=True,
    )

    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()  # Starting the generation in a separate thread.
    partial_message = ""
    for new_token in streamer:
        partial_message += new_token
        print(new_token, end="", flush=True)

    messages.append({'role': 'assistant', 'content': partial_message})
    return messages[1:]

import os
import platform


os_name = platform.system()
clear_command = 'cls' if os_name == 'Windows' else 'clear'
welcome_prompt = '欢迎使用 DeepSeek-R1-Distill-Qwen-1.5B 模型,输入内容即可进行对话,clear 清空对话历史,stop 终止程序'
print(welcome_prompt)
history = []
while True:
    query = input("\n用户:")
    if query.strip() == "stop":
        break
    if query.strip() == "clear":
        os.system(clear_command)
        print(welcome_prompt)
        continue
    print("\nDeepSeek-R1-Distill-Qwen-1.5B:", end="")
    history = inference(query, history)
    print("")

标记打卡时间

from datetime import datetime
import pytz
# 设置时区为北京时区
beijing_tz = pytz.timezone('Asia/Shanghai')
# 获取当前时间,并转为北京时间
current_beijing_time = datetime.now(beijing_tz)
# 格式化时间输出
formatted_time = current_beijing_time.strftime('%Y-%m-%d %H:%M:%S')
print("当前北京时间:", formatted_time)

推理JIT优化

import mindspore
from mindnlp.transformers import AutoTokenizer, AutoModelForCausalLM, StaticCache
from mindnlp.core import ops
from mindnlp.configs import set_pyboost
import time
import numpy as np

# 开启O2级别的jit优化,开启图算融合
mindspore.set_context(
    enable_graph_kernel=True,
    mode=mindspore.GRAPH_MODE,
    jit_config={
        "jit_level": "O2",
    },
)

def sample_top_p(probs, p=0.9):
    """
    Top-p采样函数,用于生成文本时选择下一个token。
    此处优先采用基于numpy而不是原生MindSpore的实现方式,因为在香橙派上运行效率更高
    """
    probs_np = probs.asnumpy()
    # 按概率降序排序
    sorted_indices = np.argsort(-probs_np, axis=-1)
    sorted_probs = np.take_along_axis(probs_np, sorted_indices, axis=-1)
    # 计算累积概率并创建掩码
    cumulative_probs = np.cumsum(sorted_probs, axis=-1)
    mask = cumulative_probs - sorted_probs > p
    sorted_probs[mask] = 0.0
    sorted_probs = sorted_probs / np.sum(sorted_probs, axis=-1, keepdims=True)
    # 转换回MindSpore Tensor
    sorted_probs_tensor = mindspore.Tensor(sorted_probs, dtype=mindspore.float32)
    sorted_indices_tensor = mindspore.Tensor(sorted_indices, dtype=mindspore.int32)
    next_token_idx = ops.multinomial(sorted_probs_tensor, 1)
    batch_size = probs.shape[0]
    batch_indices = ops.arange(0, batch_size, dtype=mindspore.int32).reshape(-1, 1)
    # 此处采用基于mindspore.ops的实现方式,在香橙派上兼容性最好
    # next_token = sorted_indices_tensor[batch_indices, next_token_idx]
    next_token = mindspore.ops.gather(sorted_indices_tensor, next_token_idx, axis=1, batch_dims=1)
    # next_token = mindspore.mint.gather(sorted_indices_tensor, dim=1, index=next_token_idx)
    return next_token

# 该任务将使用DeepSeek-R1-Distill-Qwen-1.5B模型,对给定的prompt进行补齐
prompts = [
    "请介绍一下自己。<think>",
    "My favorite all time favorite condiment is ketchup.",
]

# 生成参数配置
NUM_TOKENS_TO_GENERATE = 40  # 每个输入要生成的token数量
TEMPERATURE = 0.8            # 温度参数(控制生成多样性)
TOP_P = 0.8                  # Top-p采样阈值

model_id = "MindSpore-Lab/DeepSeek-R1-Distill-Qwen-1.5B-FP16"
tokenizer = AutoTokenizer.from_pretrained(model_id, mirror="modelers")
model = AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True, mirror="modelers")

# 使用model.jit()将全图静态图化
model.jit()

inputs = tokenizer(prompts, return_tensors="ms", padding=True)
set_pyboost(False)

# 使用@mindspore.jit装饰器封装模型推理函数
@mindspore.jit(jit_config=mindspore.JitConfig(jit_syntax_level='STRICT'))
def get_decode_one_tokens_logits(model, cur_token, input_pos, cache_position, past_key_values, temperature=TEMPERATURE, top_p=TOP_P):
    """单个token的解码函数,返回logits,可以使用jit进行优化"""
    logits = model(
        cur_token,
        position_ids=input_pos,
        cache_position=cache_position,
        past_key_values=past_key_values,
        return_dict=False,
        use_cache=True
    )[0]
    return logits

def decode_one_tokens(model, cur_token, input_pos, cache_position, past_key_values, temperature=TEMPERATURE, top_p=TOP_P):
    """单个token的解码函数,由logits、温度和Top_p选择合适的token"""
    logits = get_decode_one_tokens_logits(model, cur_token, input_pos, cache_position, past_key_values, temperature, top_p)

    if temperature > 0:
        probs = mindspore.mint.softmax(logits[:, -1] / temperature, dim=-1)
        new_token = sample_top_p(probs, top_p)
    else:
        new_token = mindspore.mint.argmax(logits[:, -1], dim=-1)[:, None]

    return new_token


batch_size, seq_length = inputs["input_ids"].shape

# 创建静态缓存(用于加速自回归生成)
past_key_values = StaticCache(
    config=model.config, max_batch_size=2, max_cache_len=512, dtype=model.dtype
)
cache_position = ops.arange(seq_length)
generated_ids = ops.zeros(
    batch_size, seq_length + NUM_TOKENS_TO_GENERATE + 1, dtype=mindspore.int32
)
generated_ids[:, cache_position] = inputs["input_ids"].to(mindspore.int32)

# 初始前向传播获取首个logits
logits = model(
    **inputs, cache_position=cache_position, past_key_values=past_key_values,return_dict=False, use_cache=True
)[0]

# 生成第一个新token
if TEMPERATURE > 0:
    probs = mindspore.mint.softmax(logits[:, -1] / TEMPERATURE, dim=-1)
    next_token = sample_top_p(probs, TOP_P)
else:
    next_token = mindspore.mint.argmax(logits[:, -1], dim=-1)[:, None]

generated_ids[:, seq_length] = next_token[:, 0]

# 自回归生成循环
cache_position = mindspore.tensor([seq_length + 1])
for i in range(1, NUM_TOKENS_TO_GENERATE):
    s = time.time()
    next_token = decode_one_tokens(model, next_token, None, cache_position, past_key_values)
    generated_ids[:, cache_position] = next_token.int()
    cache_position += 1
    t = time.time()
    # 打印单步生成耗时
    print("[%d]:" % i, t - s)

text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
print(text)

心得

通过两个notebook的学习了解了DeepSeek-R1-Distill-Qwen-1.5B的推理和JIT优化的相关操作,notebook学习直接从头开始一个一个cell执行很快就可以看到运行结果,模型在昇腾NPU上的推理和优化的速度还是蛮快的。整个课程的学习也基本告一个段落了,通过这个模型还是可以举一反三推理优化到其他模型的