MindSpore:For 'Optimizer',the argument parameters must be Iterable type,but got<class'mindspore.common.tensor.Tensor'>.

1.系统环境

硬件环境(Ascend/GPU/CPU): GPU
软件环境:MindSpore 版本: 1.7.0
执行模式: 静态图(GRAPH) – Python 版本: 3.7.6
操作系统平台: linux

2.报错信息

2.1 问题描述

将需要优化的参数放入优化器中,直接将Tensor类型的参数放入,由于优化器需要的数据类型是Iterable,导致执行报错。

2.2 报错信息

TypeError: For 'Optimizer', the argument parameters must be Iterable type, but got <class 'mindspore.common.tensor.Tensor'>.

2.3 脚本代码

class Attack(object):

    def __init__(self,input_img,target_img,seed=None):

        if (seed != None): np.random.seed(seed)
        self.MEAN = Tensor([0.485, 0.456, 0.406])
        self.STD = Tensor([0.229, 0.224, 0.225])
        self.LOSS = Tensor(0)
        self.expand_dims = mindspore.ops.ExpandDims()
        self.imageize = ToPILImage()
        self.tensorize = ToTensor()
        self.normalize = P.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        self.resnet = get_net()
        self.input_tensor = Tensor(self.normalize(self.tensorize(input_img)))
        self.target_tensor = Tensor(self.normalize(self.tensorize(target_img)))
        mp.imsave('./outputs/input图像.jpg', np.transpose(self._reverse_norm(self.input_tensor).asnumpy(), (1, 2, 0)))
        mp.imsave('./outputs/target图像.jpg', np.transpose(self._reverse_norm(self.target_tensor).asnumpy(), (1, 2, 0)))


        self.input_emb = self.resnet(self.expand_dims(self.input_tensor,0))
        self.target_emb = self.resnet(self.expand_dims(self.target_tensor,0))
        self.adversarial_emb = None
        self.mask_tensor = self._create_mask(input_img)
        self.ref = self.mask_tensor
        self.opt = nn.Adam(self.mask_tensor, learning_rate=0.01, weight_decay=0.0001)

3.根因分析

看报错信息,翻译意思是实参参数必须是Iterable类型,即是可迭代的。
调试发现self.mask_tensor是Tensor类型,不能进行迭代。
通过查看文档,可以通过Parameter()更好的对训练参数进行设置。同时Python里有大量内置的iterable类型,如: list,str,tuple,dict等,可以将参数包装成list实现可迭代化。

4.解决方案

解决方案说明:把self.mask_tensor改成list类型:[Parameter(self.mask_tensor)],来实现可迭代化。
修改后代码:

class Attack(object):

    def __init__(self,input_img,target_img,seed=None):

        if (seed != None): np.random.seed(seed)
        self.MEAN = Tensor([0.485, 0.456, 0.406])
        self.STD = Tensor([0.229, 0.224, 0.225])
        self.LOSS = Tensor(0)
        self.expand_dims = mindspore.ops.ExpandDims()
        self.imageize = ToPILImage()
        self.tensorize = ToTensor()
        self.normalize = P.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        self.resnet = get_net()
        self.input_tensor = Tensor(self.normalize(self.tensorize(input_img)))
        self.target_tensor = Tensor(self.normalize(self.tensorize(target_img)))
        mp.imsave('./outputs/input图像.jpg', np.transpose(self._reverse_norm(self.input_tensor).asnumpy(), (1, 2, 0)))
        mp.imsave('./outputs/target图像.jpg', np.transpose(self._reverse_norm(self.target_tensor).asnumpy(), (1, 2, 0)))


        self.input_emb = self.resnet(self.expand_dims(self.input_tensor,0))
        self.target_emb = self.resnet(self.expand_dims(self.target_tensor,0))
        self.adversarial_emb = None
        self.mask_tensor = self._create_mask(input_img)
        self.ref = self.mask_tensor
        self.opt = nn.Adam([Parameter(self.mask_tensor)], learning_rate=0.01, weight_decay=0.0001)

修改后程序正常运行。